a2 United States Patent

Branson et al.

US009436736B2

US 9,436,736 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

MANAGING STREAMS OF TUPLES

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Michael J. Branson, Rochester, MN
(US); John M. Santosuosso, Rochester,
MN (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 102 days.

Appl. No.: 14/466,184
Filed: Aug. 22, 2014

Prior Publication Data

US 2015/0370800 Al Dec. 24, 2015

Related U.S. Application Data

Continuation of application No. 14/309,999, filed on
Jun. 20, 2014.

Int. CL.
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01)
HO4L 29/06 (2006.01)
HO4N 21/00 (2011.01)
U.S. CL

CPC ... GOG6F 17/3053 (2013.01); GOGF 17/30312

(2013.01); GO6F 17/30864 (2013.01); HO4L

65/60 (2013.01); HO4L 65/605 (2013.01);

HO4L 65/80 (2013.01); H04N 21/00 (2013.01)
Field of Classification Search

GOG6F 17/30286; GO6F 17/30442; GOGF
9/5016
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,613,848 B2 11/2009 Amini et al.

7,644,110 B2 1/2010 Nishizawa et al.

8,095,690 B2 1/2012 Kashiyama et al.

8,560,526 B2 10/2013 Santosuosso et al.
2011/0282812 Al 11/2011 Chandramouli et al.
2012/0218268 Al 8/2012 Accola et al.
2014/0280128 Al* 9/2014 Branson GO6F 17/30516

707/736

FOREIGN PATENT DOCUMENTS

WO
WO

2007079095 A2 7/2007
2013155234 Al 10/2013

OTHER PUBLICATIONS

Ballard et al., “IBM InfoSphere Streams Harnessing Data in
Motion”, Sep. 2010, 360 Pages, IBM Redbooks. http://www.
redbooks.ibm.com/abstracts/sg247865 html.

(Continued)

Primary Examiner — Truong Vo
(74) Attorney, Agent, or Firm — Gregory M. Nordstrom;
Feb R. Cabrasawan

(57) ABSTRACT

A plurality of streams of tuples is received by processing
elements operating on computer processors, the processing
element having one or more stream operators. A first stream
of tuples is processed at a receiving stream operator. A
streaming condition is then identified. The streaming con-
dition is determined to be satisfied and an alternate stream of
tuples is processed at the receiving stream operator.

CPC ..o GO6F 17/30516; GO6F 17/30958; 7 Claims, 7 Drawing Sheets
- - - = -~ ~ ~
P COMPUTE NODE 100~
Pl COMPUTE NODE 1108 S
v 110A N N
%
y \
/ \

/ . { NETWORK COMPUTE NODE \

/ y 120 110¢ \
|
'\ | OPERATORGRAPH132 | ,I
\\ | STREAM MANAGER 134 | //

\ COMPUTE NODE y
\ | MANAGEMENT SYSTEM 105 110D y /
AN p
~N rd
~
~ -~
~ - - -
T~ ~ | [compiLer 136 |

COMPILER SYSTEM 102

US 9,436,736 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Fernandez-Moctezuma et al., “Towards Execution Guarantees for
Stream Queries”, 2010 IEEE International Symposium on Parallel
and Distributed Processing, Workshops and PhD Forum (IPDPSW),
pp. 1-10, Apr. 2010, (INSPEC Accession No. 11309776). DOL
10.1109/IPDPSW.2010.5470850.

IBM, “Improved handling of over-load conditions in a networked
system through efficient port-space usage”, IP.com Prior Art Data-
base Technical Disclosure, IP.com No. IPCOM000012910D, Pub-
lished Jun. 9, 2003. http://ip.com/IPCOM/000012910.

Internet Society, “General Switch Management Protocol (GSMP)
V3 (RFC3292)”, IP.com Prior Art Database Technical Disclosure,

IP.com No. IPCOMO000008397D, Original Publication Jun. 1, 2002,
Online Publication Jun. 12, 2002, © The Internet Society 2002.
http://ip.com/IPCOM/000008397.

Tucker et al., “Exploiting Punctuation Semantics in Continuous
Data Streams”, IEEE Transactions on Knowledge and Data Engi-
neering, vol. 15, No. 3, May/Jun. 2013, pp. 1-14, © 2003 IEEE,
(Received May 15, 2002, Revised Nov. 15, 2002, Accepted Dec. 4,
2002), IEEE Computer Society. DOI: 10.1109/TKDE.2003.
1198390.

Branson et al., “Managing Streams of Tuples”, U.S. Appl. No.
14/309,999, filed Jun. 20, 2014.

List of IBM Patents or Patent Applications Treated as Related.

* cited by examiner

US 9,436,736 B2

Sheet 1 of 7

Sep. 6, 2016

U.S. Patent

(A1)}

W3LSAS d3TdINOD

€l

AITdNWOD

—— _— —

aoti
3dON ILNdINOD

a0L1
JdON ALNdINOD

|

0l NILSAS LINJWIOVNVYIN

PEL YAOVNVIN WVIYULS

€1 HdVd9 ¥01Vvd3dO

a0l

VoLl
3dON 31NdINOD e

JdON ILNdINOD

—— e— —_— ——

U.S. Patent

Sep. 6, 2016

[

Sheet 2 of 7

212

I/O DEVICES

|

US 9,436,736 B2

TO
COMMUNICATIONS
NETWORK

T

12

FIG. 2

205 l l
210 215
a a
CPU /O DEVICE NETWORK
INTERFACE INTERFACE
INTERCONNECT (BUS) 220
(' 225 (,230
MEMORY STORAGE
PROCESSING
ELEMENTS 235 BUFFER 260
OPERATOR 240
[
[
\ 110

U.S. Patent

Sep. 6, 2016

Sheet

3of7 US 9,436,736 B2

(_ 312
TO
/O DEVICES COMMUNICATIONS
NETWORK
305 l l
310 315
| a a
CPU I/O DEVICE NETWORK
| INTERFACE INTERFACE
INTERCONNECT (BUS) 320
(- 325 (-330
MEMORY STORAGE
STREAM PRIMARY
MANAGER 134 OPERATOR 335
GRAPH
MONITOR 340
MANAGEMENT SYSTEM 105

FIG. 3

U.S. Patent

Sep. 6, 2016 Sheet 4 of 7 US 9,436,736 B2
(412
TO
/0 DEVICES COMMUNICATIONS
NETWORK 12

|

!

405 l l
410 415
a 4
CPU I/O DEVICE NETWORK
INTERFACE INTERFACE
INTERCONNECT (BUS) 420
(425 (—430
MEMORY STORAGE
COMPILER 136

COMPILER SYSTEM

—
N

FIG. 4

US 9,436,736 B2

Sheet 5 of 7

Sep. 6, 2016

U.S. Patent

S 'Old

Sel
303N0S

US 9,436,736 B2

Sheet 6 of 7

Sep. 6, 2016

U.S. Patent

BET
JRINOS

J24NOS

9 "Old
< Rl
- J 09
o 1% dO
4 B i
: o do
L] !‘
Y2 @
019 [45]
do —> do 500 B9 INIW3 T
40 ONISSI00ud
029 LNIWT13 ONISSIO0Nd \
10 L Z5] 229 INFWT
¥ZaNIS do « do ONISSIOO0Nd

009

L

YIOVNVYN
Wv3dls

U.S. Patent Sep. 6, 2016 Sheet 7 of 7 US 9,436,736 B2

700
START {

702 RECEIVE STREAMING TUPLES TO BE
PROCESSED

v

704 PROCESS THE FIRST STREAM OF
—
TUPLES

706 RECEIVE A SIGNAL TO EVALUATE THE STREAMS OF TUPLES
708 IDENTIFY A STREAMING CONDITION

710
DOES A
ALTERNATE
STREAM SATISFY
THE STREAMING
CONDITION?

NO

YES

v

712 PROCESS THE ALTERNATE STREAM OF
TUPLES

FINISH

FIG.7

US 9,436,736 B2

1
MANAGING STREAMS OF TUPLES

BACKGROUND

The present disclosure relates to stream computing and
more specifically, to managing streams of tuples.

Database systems are typically configured to separate the
process of storing data from accessing, manipulating, or
using data stored in a database. More specifically, database
systems use a model in which data is first stored and indexed
in a memory before subsequent querying and analysis. In
general, database systems may not be well suited for per-
forming real-time processing and analyzing streaming data.
In particular, database systems may be unable to store,
index, and analyze large amounts of streaming data effi-
ciently or in real time.

SUMMARY

According to embodiments of the present disclosure, a
method is disclosed for processing a plurality of streams of
tuples. In various embodiments, the method may include
receiving the plurality of streams of tuples to be processed
by a plurality of processing elements operating on one or
more computer processors, each processing element having
one or more stream operators. The method may also include
processing a first stream from the plurality of streams of
tuples at a receiving stream operator from the one or more
stream operators. In addition, the method may include
identifying a streaming condition. Also, the method may
include determining that the streaming condition is satisfied.
Furthermore, the method may include processing an alter-
nate stream from the plurality of streams of tuples at the
receiving stream operator in response to the streaming
condition being satisfied.

According to embodiments of the present disclosure, a
system is disclosed for processing a plurality of streams of
tuples. In various embodiments, the system may include one
or more processing elements having one or more stream
operators configured to receive the plurality of streams of
tuples. The stream operators may also be further configured
to process a first stream from the plurality of stream of
tuples. In addition, the stream operators may be further
configured to identify a streaming condition. Also, the
stream operators may be further configured to determine that
the streaming condition is satisfied. Furthermore, the stream
operators may be further configured to process an alternate
stream from the plurality of streams of tuples in response to
the streaming condition being satisfied.

According to embodiments of the present disclosure, a
computer program product is disclosed for processing a
plurality streams of tuples. In various embodiments, the
computer program product may receive the plurality of
streams of tuples to be processed by a plurality of processing
elements operating on one or more computer processors,
each processing element having one or more stream opera-
tors. The computer program product may also process a first
stream from the plurality of streams of tuples at a receiving
stream operator from the one or more stream operators. In
addition, the computer program product may identify a
streaming condition. Also, the computer program product
may determine that the streaming condition is satisfied.
Furthermore, the computer program product may process an
alternate stream from the plurality of streams of tuples at the
receiving stream operator in response to the streaming
condition being satisfied.

20

25

40

45

50

55

2

The above summary is not intended to describe each
illustrated embodiment or every implementation of the pres-
ent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present application are
incorporated into, and form part of, the specification. They
illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

FIG. 1 illustrates a computing infrastructure that may be
configured to execute a stream-based computing application,
according to some embodiments.

FIG. 2 is a more detailed view of a compute node 110,
which may be the same as one of the compute nodes
110A-110D of FIG. 1, according to various embodiments.

FIG. 3 is a more detailed view of the management system
105 of FIG. 1 according to some embodiments.

FIG. 4 is a more detailed view of the compiler system 102
of FIG. 1 according to some embodiments.

FIG. 5 illustrates an exemplary operator graph for a
stream computing application beginning from one or more
sources through to one or more sinks, according to some
embodiments.

FIG. 6 depicts an operator graph for managing streams of
tuples, consistent with embodiments of the present disclo-
sure.

FIG. 7 depicts a method for managing streams of tuples,
consistent with embodiments of the present disclosure.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and will be described in
detail. It should be understood, however, that the intention is
not to limit the invention to the particular embodiments
described. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention.

DETAILED DESCRIPTION

Aspects of the present disclosure relate to stream com-
puting, more particular aspects relate to managing streams of
tuples. While the present disclosure is not necessarily lim-
ited to such applications, various aspects of the disclosure
may be appreciated through a discussion of various
examples using this context.

Stream-based computing and stream-based database com-
puting are emerging as a developing technology for database
systems. Products are available which allow users to create
applications that process and query streaming data before it
reaches a database file. With this emerging technology, users
can specify processing logic to apply to inbound data
records while they are “in flight,” with the results available
in a very short amount of time, often in fractions of'a second.
Constructing an application using this type of processing has
opened up a new programming paradigm that will allow for
development of a broad variety of innovative applications,
systems, and processes, as well as present new challenges
for application programmers and database developers.

Various embodiments of the present disclosure are
directed toward managing streams of tuples. A stream com-
puting application includes processing elements comprised
of stream operators. Stream operators are connected to one
another such that data flows from one stream operator to the
next (e.g., over a TCP/IP socket). Processing elements and

US 9,436,736 B2

3

stream operators attach to each other by identifying a stream
of data they would like to receive. A stream operator can
receive multiple streams of data. When this occurs, data is
said to come into the stream operator on multiple ports.
Steam operators can also receive one stream of data at one
port, disconnect the stream, and receive a different stream of
data at the same port. In either case, it may be preferable to
process one stream of data over another. There are several
streaming conditions that may make it preferable to process
one stream of data over another. For instance, the streaming
condition can be based on the rate at which data is received
by a stream operator, the hardware from which the receiving
stream operator is deployed, the number of problems
encountered while processing a stream of tuples, the amount
of “new” or “unique” data in a stream of tuples, or a
hierarchical ranking of the stream of tuples. Therefore,
several embodiments are described herein that override data
streaming into a stream operator based off of real time
streaming conditions.

In streaming applications, scalability is achieved by dis-
tributing an application across nodes by creating executables
(i.e., processing elements), as well as replicating processing
elements on multiple nodes and load balancing among them.
Stream operators in a stream computing application can be
fused together to form a processing element that is execut-
able. Doing so allows processing elements to share a com-
mon process space, resulting in much faster communication
between stream operators than is available using inter-
process communication techniques (e.g., using a TCP/IP
socket). Further, processing elements can be inserted or
removed dynamically from an operator graph representing
the flow of data through the stream computing application.
A particular stream operator may not reside within the same
operating system process as other stream operators. In
addition, stream operators in the same operator graph may
be hosted on different nodes, e.g., on different compute
nodes or on different cores of a compute node.

An operator graph can have (be an execution path for) a
plurality of stream operators to process streaming data. The
streams of data comprising the streaming data can flow from
multiple source operators and can be received by multiple
receiving operators. In certain embodiments, one source
operator can send a stream of data that is equivalent to a
stream of data sent from a second operator. For example,
source operator 1 can count the number of cars that pass
through a checkpoint during each hour of the day and
calculate the total. In addition, source operator 2 can also
count the number of cars that pass through the same check-
point during each hour of the day and calculate the total. As
a result, source 1 and source 2 should output the same total
each hour. Particular embodiments of the present disclosure
can allow receiving operators to alternate between receiving
a streams of data from different source operators that send
the same or similar data.

Processing elements are triggered to execute when a
stream of data arrives at a port. Data flows in the form of a
“tuple.” A tuple is a sequence of one or more attributes
associated with an entity. Attributes may be any of a variety
of different types, e.g., integer, float, Boolean, string, etc.
The attributes may be ordered. In addition to attributes
associated with an entity, a tuple may include metadata, i.e.,
data about the tuple. A tuple may be extended by adding one
or more additional attributes or metadata to it. As used
herein, “stream” or “data stream” refers to a sequence of
tuples. Generally, a stream may be considered a pseudo-
infinite sequence of tuples.

20

25

30

35

40

45

50

55

60

4

When a stream operator receives a tuple, it may perform
operations, such as analysis logic, which may change the
tuple by adding or subtracting attributes, or updating the
values of existing attributes within the tuple. When the
analysis logic is complete, a new tuple is then sent to the
next stream operator. Generally, a particular tuple output by
a stream operator or processing element may not be con-
sidered to be the same tuple as a corresponding input tuple
even if the input tuple is not changed by the processing
element. However, to simplify the present description and
the claims, an output tuple that has the same data attributes
or is associated with the same entity as a corresponding input
tuple will be referred to herein as the same tuple unless the
context or an express statement indicates otherwise.

Stream computing applications handle massive volumes
of data that need to be processed efficiently and in real time.
For example, a stream computing application may continu-
ously ingest and analyze hundreds of thousands of messages
per second and up to petabytes of data per day. Accordingly,
each stream operator in a stream computing application may
be required to process a received tuple within fractions of a
second.

Tuples stream from one stream operator to another along
communication paths. Communication paths can be a criti-
cal resource in a stream computing application. Efficient use
of communication path bandwidth can speed up processing.
According to various embodiments, an alternate stream of
tuples can be received and processed by a stream operator
instead of a first stream of tuples that is currently being
received and processed by the stream operator. This may
increase the quality of the output of the stream operators, the
processing elements, and the stream computing application.
Accordingly, various embodiments are directed towards
replacing a stream of tuples with an alternate stream of
tuples that satisfies a streaming condition or multiple stream-
ing conditions.

Turning now to the figures, FIG. 1 illustrates a computing
infrastructure 100 that may be configured to execute a
stream-based computing application, according to some
embodiments. The computing infrastructure 100 includes a
management system 105 and two or more compute nodes
110A-110D—i.e., hosts—which are communicatively
coupled to each other using one or more communications
networks 120. The communications network 120 may
include one or more servers, networks, or databases, and
may use a particular communication protocol to transfer data
between the compute nodes 110A-110D. A compiler system
102 may be communicatively coupled with the management
system 105 and the compute nodes 110 either directly or via
the communications network 120.

The management system 105 can control the management
of'the compute nodes 110A-110D (discussed further on FIG.
3). The management system 105 can have an operator graph
132 with one or more stream operators and a stream manager
134 to control the management of streams of tuples in the
operator graph 132.

The communications network 120 may include a variety
of types of physical communication channels or “links.” The
links may be wired, wireless, optical, or any other suitable
media. In addition, the communications network 120 may
include a variety of network hardware and software for
performing routing, switching, and other functions, such as
routers, switches, or bridges. The communications network
120 may be dedicated for use by a stream computing
application or shared with other applications and users. The
communications network 120 may be any size. For example,
the communications network 120 may include a single local

US 9,436,736 B2

5

area network or a wide area network spanning a large
geographical area, such as the Internet. The links may
provide different levels of bandwidth or capacity to transfer
data at a particular rate. The bandwidth that a particular link
provides may vary depending on a variety of factors, includ-
ing the type of communication media and whether particular
network hardware or software is functioning correctly or at
full capacity. In addition, the bandwidth that a particular link
provides to a stream computing application may vary if the
link is shared with other applications and users. The avail-
able bandwidth may vary depending on the load placed on
the link by the other applications and users. The bandwidth
that a particular link provides may also vary depending on
a temporal factor, such as time of day, day of week, day of
month, or season.

FIG. 2 is a more detailed view of a compute node 110,
which may be the same as one of the compute nodes
110A-110D of FIG. 1, according to various embodiments.
The compute node 110 may include, without limitation, one
or more processors (CPUs) 205, a network interface 215, an
interconnect 220, a memory 225, and a storage 230. The
compute node 110 may also include an I/O device interface
210 used to connect I/O devices 212, e.g., keyboard, display,
and mouse devices, to the compute node 110.

Each CPU 205 retrieves and executes programming
instructions stored in the memory 225 or storage 230.
Similarly, the CPU 205 stores and retrieves application data
residing in the memory 225. The interconnect 220 is used to
transmit programming instructions and application data
between each CPU 205, /O device interface 210, storage
230, network interface 215, and memory 225. The intercon-
nect 220 may be one or more busses. The CPUs 205 may be
a single CPU, multiple CPUs, or a single CPU having
multiple processing cores in various embodiments. In one
embodiment, a processor 205 may be a digital signal pro-
cessor (DSP). One or more processing elements 235 (de-
scribed below) may be stored in the memory 225. A pro-
cessing element 235 may include one or more stream
operators 240 (described below). In one embodiment, a
processing element 235 is assigned to be executed by only
one CPU 205, although in other embodiments the stream
operators 240 of a processing element 235 may include one
or more threads that are executed on two or more CPUs 205.
The memory 225 is generally included to be representative
of a random access memory, e.g., Static Random Access
Memory (SRAM), Dynamic Random Access Memory
(DRAM), or Flash. The storage 230 is generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), or removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), or connections to storage area
network (SAN) devices, or other devices that may store
non-volatile data. The network interface 215 is configured to
transmit data via the communications network 120.

A streams application may include one or more stream
operators 240 that may be compiled into a “processing
element” container 235. The memory 225 may include two
or more processing elements 235, each processing element
having one or more stream operators 240. Fach stream
operator 240 may include a portion of code that processes
tuples flowing into a processing element and outputs tuples
to other stream operators 240 in the same processing ele-
ment, in other processing elements, or in both the same and
other processing elements in a stream computing applica-
tion. Processing elements 235 may pass tuples to other
processing elements that are on the same compute node 110
or on other compute nodes that are accessible via commu-

10

15

20

25

30

35

40

45

50

55

60

65

6

nications network 120. For example, a processing element
235 on compute node 110A may output tuples to a process-
ing element 235 on compute node 110B.

The storage 230 may include a buffer 260. Although
shown as being in storage, the buffer 260 may be located in
the memory 225 of the compute node 110 or in a combina-
tion of both memories. Moreover, storage 230 may include
storage space that is external to the compute node 110, such
as in a cloud.

FIG. 3 is a more detailed view of the management system
105 of FIG. 1 according to some embodiments. The man-
agement system 105 may include, without limitation, one or
more processors (CPUs) 305, a network interface 315, an
interconnect 320, a memory 325, and a storage 330. The
management system 105 may also include an 1/O device
interface 310 connecting /O devices 312, e.g., keyboard,
display, and mouse devices, to the management system 105.

Each CPU 305 retrieves and executes programming
instructions stored in the memory 325 or storage 330.
Similarly, each CPU 305 stores and retrieves application
data residing in the memory 325 or storage 330. The
interconnect 320 is used to move data, such as programming
instructions and application data, between the CPU 305, I/O
device interface 310, storage unit 330, network interface
305, and memory 325. The interconnect 320 may be one or
more busses. The CPUs 305 may be a single CPU, multiple
CPUs, or a single CPU having multiple processing cores in
various embodiments. In one embodiment, a processor 305
may be a DSP. Memory 325 is generally included to be
representative of a random access memory, e.g., SRAM,
DRAM, or Flash. The storage 330 is generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), connections to storage area-net-
work (SAN) devices, or the cloud. The network interface
315 is configured to transmit data via the communications
network 120.

The memory 325 may store a stream manager 134.
Additionally, the storage 330 may store an operator graph
335. The operator graph 335 may define how tuples are
routed to processing elements 235 (FIG. 2) for processing.
The stream manager 134 may contain a monitor 340. The
monitor 340 may examine the operator graph 132 to deter-
mine the amount of data being buffered on a stream operator.
The monitor 340 may be a part of the stream manager 134
or act independently.

FIG. 4 is a more detailed view of the compiler system 102
of FIG. 1 according to some embodiments. The compiler
system 102 may include, without limitation, one or more
processors (CPUs) 405, a network interface 415, an inter-
connect 420, a memory 425, and storage 430. The compiler
system 102 may also include an 1/O device interface 410
connecting 1/O devices 412, e.g., keyboard, display, and
mouse devices, to the compiler system 102.

Each CPU 405 retrieves and executes programming
instructions stored in the memory 425 or storage 430.
Similarly, each CPU 405 stores and retrieves application
data residing in the memory 425 or storage 430. The
interconnect 420 is used to move data, such as programming
instructions and application data, between the CPU 405, 1/O
device interface 410, storage unit 430, network interface
415, and memory 425. The interconnect 420 may be one or
more busses. The CPUs 405 may be a single CPU, multiple
CPUs, or a single CPU having multiple processing cores in
various embodiments. In one embodiment, a processor 405
may be a DSP. Memory 425 is generally included to be

US 9,436,736 B2

7

representative of a random access memory, e.g., SRAM,
DRAM, or Flash. The storage 430 is generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), connections to storage area-net-
work (SAN) devices, or to the cloud. The network interface
415 is configured to transmit data via the communications
network 120.

The memory 425 may store a compiler 136. The compiler
136 compiles modules, which include source code or state-
ments, into the object code, which includes machine instruc-
tions that execute on a processor. In one embodiment, the
compiler 136 may translate the modules into an intermediate
form before translating the intermediate form into object
code. The compiler 136 may output a set of deployable
artifacts that may include a set of processing elements and
an application description language file (ADL file), which is
a configuration file that describes the streaming application.
In some embodiments, the compiler 136 may be a just-in-
time compiler that executes as part of an interpreter. In other
embodiments, the compiler 136 may be an optimizing
compiler. In various embodiments, the compiler 136 may
perform peephole optimizations, local optimizations, loop
optimizations, inter-procedural or whole-program optimiza-
tions, machine code optimizations, or any other optimiza-
tions that reduce the amount of time required to execute the
object code, to reduce the amount of memory required to
execute the object code, or both. The output of the compiler
136 may be represented by an operator graph, e.g., the
operator graph 335.

The compiler 136 may also provide the application
administrator with the ability to optimize performance
through profile-driven fusion optimization. Fusing operators
may improve performance by reducing the number of calls
to a transport. While fusing stream operators may provide
faster communication between operators than is available
using inter-process communication techniques, any decision
to fuse operators requires balancing the benefits of distrib-
uting processing across multiple compute nodes with the
benefit of faster inter-operator communications. The com-
piler 136 may automate the fusion process to determine how
to best fuse the operators to be hosted by one or more
processing elements, while respecting user-specified con-
straints. This may be a two-step process, including compil-
ing the application in a profiling mode and running the
application, then re-compiling and using the optimizer dur-
ing this subsequent compilation. The end result may, how-
ever, be a compiler-supplied deployable application with an
optimized application configuration.

FIG. 5 illustrates an exemplary operator graph 500 for a
stream computing application beginning from one or more
sources 135 through to one or more sinks 504, 506, accord-
ing to some embodiments. This flow from source to sink
may also be generally referred to herein as an execution
path. In addition, this flow from source to sink may include
a plurality of streams, beginning with a stream that process-
ing element PE1 receives from source 135 to streams
respectively received by processing elements PE6, PE8, and
PE10. Although FIG. 5 is abstracted to show connected
processing elements PE1-PE10, the operator graph 500 may
include data flows between stream operators 240 (FIG. 2)
within the same or different processing elements. Typically,
processing elements, such as processing element 235 (FIG.
2), receive tuples from an input stream as well as output

5

10

15

20

25

30

35

40

45

50

55

60

65

8

tuples to another processing element as an output stream
(except for a sink—where a stream terminates, or a source—
where a stream begins).

The example operator graph shown in FIG. 5 includes ten
processing elements (labeled as PE1-PE10) running on the
compute nodes 110A-110D. A processing element may
include one or more stream operators fused together to form
an independently running process with its own process 1D
(PID) and memory space. In cases where two (or more)
processing elements are running independently, inter-pro-
cess communication may occur using a “transport,” e.g., a
network socket, a TCP/IP socket, or shared memory. How-
ever, when stream operators are fused together, the fused
stream operators can use more rapid communication tech-
niques for passing tuples among stream operators in each
processing element.

The operator graph 500 begins at a source 135 and ends
at a sink 504, 506. Compute node 110A includes the pro-
cessing elements PE1, PE2, and PE3. Source 135 flows into
the processing element PE1, which in turn outputs tuples
that are received by PE2 and PE3. For example, PE1 may
split data attributes received in a tuple and pass some data
attributes in a new tuple to PE2, while passing other data
attributes in another new tuple to PE3. As a second example,
PE1 may pass some received tuples to PE2 while passing
other tuples to PE3. Data that flows to PE2 is processed by
the stream operators contained in PE2, and the resulting
tuples are then output to PE4 on compute node 110B
Likewise, the tuples output by PE4 flow to operator sink PE6
504. Similarly, tuples flowing from PE3 to PES also reach
the operators in sink PE6 504. Thus, in addition to being a
sink for this example operator graph, PE6 could be config-
ured to perform a join operation, combining tuples received
from PE4 and PES. This example operator graph also shows
tuples flowing from PE3 to PE7 on compute node 110C,
which itself shows tuples flowing to PE8 and looping back
to PE7. Tuples output from PE8 flow to PE9 on compute
node 110D, which in turn outputs tuples to be processed by
operators in a sink processing element, for example PE10
506.

The tuple received by a particular processing element 235
(FIG. 2) is generally not considered to be the same tuple that
is output downstream. Typically, the output tuple is changed
in some way. An attribute or metadata may be added,
deleted, or changed. However, it is not required that the
output tuple be changed in some way. Generally, a particular
tuple output by a processing element may not be considered
to be the same tuple as a corresponding input tuple even if
the input tuple is not changed by the processing element.
However, to simplify the present description and the claims,
an output tuple that has the same data attributes as a
corresponding input tuple may be referred to herein as the
same tuple.

Processing elements 235 (FIG. 2) may be configured to
receive or output tuples in various formats, e.g., the pro-
cessing elements or stream operators could exchange data
marked up as XML documents. Furthermore, each stream
operator 240 within a processing element 235 may be
configured to carry out any form of data processing func-
tions on received tuples, including, for example, writing to
database tables or performing other database operations such
as data joins, splits, reads, etc., as well as performing other
data analytic functions or operations.

The stream manager 134 of FIG. 1 may be configured to
monitor a stream computing application running on compute
nodes, e.g., compute nodes 110A-110D, as well as to change
the deployment of an operator graph, e.g., operator graph

US 9,436,736 B2

9

132. The stream manager 134 may move processing ele-
ments from one compute node 110 to another, for example,
to manage the processing loads of the compute nodes
110A-110D in the computing infrastructure 100. Further,
stream manager 134 may control the stream computing
application by inserting, removing, fusing, un-fusing, or
otherwise modifying the processing elements and stream
operators (or what tuples flow to the processing elements)
running on the compute nodes 110A-110D.

Because a processing element may be a collection of
fused stream operators, it is equally correct to describe the
operator graph as one or more execution paths between
specific stream operators, which may include execution
paths to different stream operators within the same process-
ing element. FIG. 5 illustrates execution paths between
processing elements for the sake of clarity.

FIG. 6 depicts an operator graph 600 for managing
streams of tuples, consistent with embodiments of the pres-
ent disclosure. As shown, the stream computing system 600
can include sources 135, 136, processing elements 618, 620,
622, sink 624, and a steam manager 626. Processing element
618 can include stream operators 602, 604, 606, processing
element 620 can include stream operators 607, 608, 610,
612, and processing element 622 can include stream opera-
tors 614 and 616.

The operator graph 600 can begin from source 135 or
source 136 through to the sink 624. In FIG. 6, as shown,
there are solid arrow lines and dashed arrow lines. The solid
arrow lines represent a constant stream of tuples. However,
the dashed arrow lines from sources 135 and 136 and stream
operators 607 and 608 represent streams of tuples that a
receiving operator can alternate between receiving and pro-
cessing. Various embodiments of the current disclosure are
directed towards a stream computing system that receives a
stream of tuples from a source (e.g., source 135). The stream
of tuples is then processed by a receiving stream operator.
The receiving stream operator can then receive a signal to
evaluate the stream of tuples. A streaming condition can be
identified and in certain embodiments, the receiving opera-
tor can determine that an alternate stream from a source
(e.g., source 136) satisfies the streaming condition. In other
embodiments, the stream manager, e.g. stream manager 626,
can determine that an alternate stream of tuples satisfies the
streaming condition. The alternate stream can then be pro-
cessed by the receiving operator.

In certain embodiments, a stream of tuples can be
received by stream operator 602 from the source 135 or
source 136. As illustrated, the stream of tuples can be
processed and a first stream of tuples can be sent to stream
operator 604, a second stream of tuples can be sent to stream
operator 607, and a third stream of tuples can be sent to
stream operator 608. The first stream of tuples can be
processed by stream operators 604, 606, 614, 616 to sink
624. The second stream can be processed by stream operator
607 and the third stream can be processed by stream operator
608. Stream operator 610 can then receive and process the
second stream from stream operator 607 and send the second
stream to stream operator 612 where the second stream is
processed by stream operator 612 and sent to sink 624.
Alternatively, stream operator 610 can receive and process
the third stream from stream operator 608 and send the third
stream to stream operator 612 where the third stream is
processed by stream operator 612 and sent to sink 624.

As shown, stream operator 602 can receive a stream of
tuples from either stream source 135 or 136. As stated
herein, stream operators attach to each other by identifying
a stream of tuples they would like to receive. For stream

10

15

20

25

30

35

40

45

50

55

60

65

10

operators to attach, a stream operator declares the stream
needed as an input. In an embodiment, the stream operator
can declare the stream explicitly by name. In another
embodiment, the stream operator can declare properties
needed as an input. These properties may be present in some
streams and not present in another. Therefore, a stream that
has the properties can be chosen dynamically by the stream
operator.

Multiple streams can be identified and multiple streams
can have properties that match the declared properties.
Therefore, an operator can receive multiple streams of
tuples. When this occurs, streams of tuples are said to come
into the stream operator on multiple input ports. However,
depending upon the application, a stream of tuples coming
in on a given input port can be ignored. In an embodiment,
a first stream of tuples can be connected and received at a
first input port of a stream operator and a second stream of
tuples can be connected and received at a second input port.
In response to determining that a streaming condition is not
met, the stream operator can process only the first stream of
tuples, but still receive the second stream of tuples on the
second input port and discard or otherwise not process the
second stream of tuples. In another embodiment, the stream
operator can have the first stream of tuples connected to the
first input port and process the first stream of tuples. In
response to determining that a streaming condition is met,
the stream operator can disconnect the first stream of tuples
and connect the second stream of tuples to the first input
port. The stream operator can then receive and process the
second stream of tuples.

As stated, the stream of tuples that the stream operator
receives and processes can be in response to a streaming
condition being met. In an embodiment, the streaming
condition can be the rate at which data is received by a
stream operator. The rate of the stream of tuples processed
can either be higher or lower, i.e. different, than the rate of
the stream of tuples not processed. The streams of tuples can
have the same type of data and the stream of tuples pro-
cessed can be chosen based on that stream having data that
is correct or more reliable than another stream of tuples.
There can be multiple ways to determine whether one stream
is correct or more reliable than another stream. For instance,
reliability can be based on historical data, a present “normal”
data rate range, a source, e.g. a stream operator or a
processing element, that is known to be more reliable, a
source that is on a more reliable infrastructure, e.g. a more
reliable server, or a source that is less likely to be hacked or
otherwise compromised.

For example, sources 135 and 136 both monitor the
amount of vehicles that travel past two points on a highway
each day. Therefore, sources 135 and 136 provide two sets
of the same type of data. Assume that stream operator 602
currently only processes a stream of tuples from source 135.
However, periodically, stream operator 602 or stream man-
ager 626 can determine the rate at which the stream of tuples
is received from source 135 and the rate at which the stream
of tuples is received from source 136. In this embodiment,
stream operator 602 can process the stream of tuples that is
received at a higher data rate. Therefore, stream operator 602
can determine that the stream of tuples sent from source 136
has a higher data rate than the stream of tuples sent from
source 135. Stream operator 602 can then disregard the
stream of tuples sent from source 135 and process the stream
of tuples sent from source 136. Furthermore, at a later time,
stream operator 602 or stream manager 626 can check again
to see if the stream of tuples sent from source 136 still has
a higher data rate than the stream of tuples sent from source

US 9,436,736 B2

11

135. If it does, stream operator 602 can continue to process
the stream of tuples from source 136. However, if the stream
of tuples sent from source 135 has a higher data rate, stream
operator 602 can disregard the stream of tuples sent from
source 136 and instead process the stream of tuples sent
from source 135.

In various embodiments, it may be determined whether a
streaming condition is met when a stream operator receives
a signal to evaluate alternate streams of tuples. In an
embodiment, the stream operator can determine whether a
streaming condition is met in response to receiving the
signal. In other embodiments, the stream manager 626 can
determine whether a streaming condition is met in response
to the stream operator receiving the signal.

In certain embodiments, the signal can be in the form of
a punctuation within the stream of tuples that is being
received by stream operator. A punctuation is a control
signal (marker) sent by an upstream stream operator that
appears interleaved with the tuples in a stream. For example
two kinds of punctuation are: window punctuations and final
punctuations. A window punctuation separates groups of
consecutive tuples on a stream to create window boundaries.
For example, each time stream operator 610 receives a
window punctuation, it identifies a streaming condition and
determines whether an alternate stream satisfies the stream-
ing condition. Various embodiments can use other suitable
punctuations.

In other embodiments, the signal to evaluate alternate
streams of tuples can be an out of band signal. The out of
band signal can come from a number of sources such as the
stream manager 626, another application, or an external
system. An out of band signal can be independent from the
stream of tuples and can be delivered to a stream operator on
a control port.

In another embodiment, the streaming condition can be
based on the hardware from which the source is deployed.
This can include physical location, IP address or machine
names. For example, referring again to our highway
example, source 135 can be deployed on a sensor that is
newer and therefore, more reliable than the sensor from
which source 136 is deployed. However, at certain times
during a day, the sensor from which source 135 is deployed
is turned off because of lack of use and to conserve energy.
As a result, if the sensor from which source 135 is deployed
is turned off, stream operator 602 can receive a stream of
tuples from source 136. However, if the sensor from which
source 135 is deployed is turned on, stream operator 602 can
receive a stream of tuples from source 135.

In another embodiment the streaming condition can be a
threshold of exceptions output by stream operator 602, i.e.
the number of exceptions output by stream operator 602
outside the threshold will determine whether stream operator
602 processes an alternate stream of tuples. The number of
exceptions output by stream operator 602 can be based on
the number of problems encountered while processing a
stream of tuples. For example, referring back to the highway
example, source 135 can experience a number of problems,
such as a problem with a sensor, a problem with a network
connection to the sensor, or there can be a faulty change to
the logic that is being applied to the stream of tuples before
it gets to the application. In this example, stream operator
602 may output an exception each time it encounters a
problem processing the stream of tuples from source 135.
Therefore, if source 135 is experiencing a problem, stream
operator 602 may experience problems processing the
stream of tuples sent from source 135. Thus, if stream
operator 602 outputs an amount of exceptions that meets or

10

20

25

30

35

40

45

50

55

60

65

12

exceeds a threshold value and stream operator 602 does not
meet or exceed that threshold value when processing a
stream of tuples sent from source 136, stream operator 602
can then process the stream of tuples sent from source 136.

In another case, source 135 may not be sending enough
“unique” or “interesting” data to stream operator 602. In this
case, the streaming condition is based on the amount of
“unique” data provided by a stream of tuples. Stream
operator 602 can be configured to determine if data is
“unique” based upon a subset of the attributes in a stream of
tuples. For example, individuals can be given parole before
they serve their entire prison sentence. There is a likelihood
that individuals will commit a crime that violates their
parole and be sent back to prison. It has been found that
individuals 50 years of age or older are less likely to violate
their parole than individuals under the age of 50. Therefore,
a streaming application only wants to process streams that
have individuals under the age of 50, to find out the crimes
these individuals committed for which they were sent back
to prison. As a result, the “unique” attribute that stream
operator 602 will look for to determine which stream to
process is the age of the individual. In this case, stream
operator 602 looks at the attribute and determines that
source 135 is sending a stream of tuples that have profiles of
individuals 50 and older. Stream operator 602 then looks at
the attribute and determines that source 136 is sending a
stream of tuples that have profiles of individuals under the
age of 50. Therefore, stream operator 602 can process the
stream of tuples sent from source 136.

In another embodiment, the streaming condition can be a
hierarchical ranking of the streams. Therefore, stream opera-
tor 602 can be configured with a ranking of streams of
tuples. The ranking can be based on a number of different
criteria, such as the hardware from which sources are
deployed, similar to our previous example. In this example,
stream operator 602 can be configured to rank the stream of
tuples sent from source 135 above the stream of tuples sent
from source 136 because the sensor from which source 135
is deployed is more reliable than the sensor from which
source 136 is deployed. Therefore, if the stream of tuples is
available to be received from source 135, then stream
operator 602 will process the stream of tuples from source
135. However, if the stream of tuples is not available to be
received from source 135, then the stream operator 602 will
process the stream of tuples from source 136.

The preceding examples are simplified examples of a
stream of tuples satisfying a streaming condition and over-
riding another stream of tuples. A real world example can
involve millions of streams of tuples per second passing
through multiple stream operators and processing elements
along multiple execution paths. Furthermore, the above
examples have been given with respect to alternating
between sources 135 and 136. However, stream operators
that send two or more streams of tuples that provide the
same data could just have easily been used (e.g., stream
operators 607 and 608). There are also other streaming
conditions or several streaming conditions used to determine
which stream of tuples a stream operator will receive and
process. For instance, a first streaming condition can be
based on a data rate threshold value and a second streaming
condition can be based on a threshold value of exceptions
output by a receiving stream operator while processing a
stream of tuples. The stream operator can determine that two
streams of tuples meet the data rate threshold value. How-
ever, the streaming operator outputs a number of exceptions
that meets or exceeds a threshold value when processing a
first stream of tuples and does not output a number of

US 9,436,736 B2

13

exceptions that meets or exceeds the threshold value when
processing an alternate stream of tuples. Therefore, the
alternate stream of tuples satisfies both streaming conditions
while the first stream of tuples does not and the stream
operator can process the second stream of tuples.

FIG. 7 depicts a method 700 for managing streams of
tuples, consistent with embodiments of the present disclo-
sure. In operation 702, streams of tuples are received by
multiple stream operators operating on multiple processing
elements operating on one or more computer processors. As
stated herein, stream operators attach to each other by
identifying a stream of tuples they would like to receive.
When a stream operator wants to receive a stream of tuples,
it can name the stream of tuples. By doing so, the stream
operators can attach to one another and the stream of tuples
can connect to an input port of the stream operator that wants
to receive the stream of tuples.

In operation 704, a first stream of tuples is processed. In
operation 706, the stream operator receives a signal to
evaluate the streams of tuples. In one embodiment, the
signal can be in the form of a punctuation interleaved with
the first stream of tuples that is being processed by stream
operator. In another embodiment, the signal can be an out of
band signal independent from the stream of tuples.

In operation 708, a streaming condition is identified.
There can be numerous streaming conditions. For instance,
the streaming condition can be based on the rate at which
data is received by a stream operator, the hardware from
which the receiving stream operator is deployed, the number
of problems encountered while processing a stream of
tuples, the amount of “new” or “unique” data in a stream of
tuples, or a hierarchical ranking of the streams of tuples.

In operation 710, it is determined whether the streaming
condition is satisfied. For example, a stream operator receiv-
ing a first stream of tuples and an alternate stream of tuples
determines that both streams meet a data rate threshold
value. However, when processing the alternate stream of
tuples, the streaming operator outputs a number of excep-
tions representing problems encountered processing the
stream. The problems encountered can signify a possible
problem with the data of the alternate stream. Furthermore,
the number of exceptions meets or exceeds a threshold
value. When processing the first stream of tuples, the stream
operator does not encounter as many problems processing
the stream and does not output a number of exceptions that
meets or exceeds the threshold value. Therefore, the first
stream of tuples satisfies both streaming conditions while the
alternate stream of tuples does not. In this case, the first
stream of tuples will continue to be processed by the stream
operator, in operation 704, until the stream operator receives
another signal, in operation 706, to evaluate the streams of
tuples again.

In another example, the number of exceptions output by
the stream operator meets or exceeds the threshold value
when processing the first stream. However, the number of
exceptions output by the stream operator does not meet or
exceed the threshold value when processing the alternate
stream. Therefore, in operation 712, the alternate stream of
tuples is processed by the stream operator.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an

10

15

20

25

30

35

40

45

50

55

60

65

14

instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of

US 9,436,736 B2

15

methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the

40

45

16

practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A method for processing a plurality of streams of tuples,
each of the plurality of streams including at least one tuple,
the method comprising:

receiving the plurality of streams of tuples to be processed

by a plurality of processing elements operating on one
or more computer processors, each processing element
having one or more stream operators;

processing, at a first stream operator included in the one

or more stream operators, a first stream included in the
plurality of streams of tuples, the first stream operator
receiving the first stream;
identifying a streaming condition, the streaming condition
associated with processing an alternate stream as pref-
erable to processing the first stream, the alternate
stream included in the plurality of streams of tuples;

determining that the streaming condition is satisfied
based, at least in part, on at least one of the receiving
stream operator generating exceptions outside of a
threshold and the alternate stream satisfying a unique-
ness criterion, wherein the exceptions are associated
with problems encountered in processing the first
stream by the first stream operator, and wherein the
uniqueness criterion is associated with at least one
attribute of the alternate stream; and

processing, at the first stream operator, the alternate

stream in response to the streaming condition being
satisfied.

2. The method of claim 1, further comprising receiving, at
the first stream operator, a signal to evaluate the plurality of
streams of tuples.

3. The method of claim 2, wherein the signal is a control
signal interleaved with the tuples included in the first stream.

4. The method of claim 2, wherein the signal is an out of
band signal separate from the first stream.

5. The method of claim 1, wherein the determining the
streaming condition is satisfied is further based at least in
part on the alternate stream having a different rate of data
than the first stream, and wherein the different rate of data is
associated with the rate at which the first stream operator
receives the tuples included in the first stream and the
alternate stream.

6. The method of claim 1, wherein the stream operator is
configured with a ranking of streams, wherein the ranking is
associated with the sources of the plurality of streams, and
wherein the determining the stream streaming condition is
satisfied is further based at least in part on the alternate
stream having a higher ranking than the first stream.

7. The method of claim 1, wherein the determining the
streaming condition is satisfied is further based at least in
part on hardware from which at least one of the first stream
operator and a second stream operator is deployed, wherein
the second stream operator is included in the one or more
stream operators, and wherein the second stream operator
sends the alternate stream to the first stream operator.

#* #* #* #* #*

